====== Combined 13 - 14 Analysis ======
This one is interesting
plot(((comb$rm1t+comb$lm1t+comb$nm1t)/3),(comb$rv5time+comb$ra5time))
{{:r:micro1_ttime.png?400|}}
> cor.test(((comb$rm1t+comb$lm1t+comb$nm1t)/3),(comb$rv5time+comb$ra5time))
Pearson's product-moment correlation
data: ((comb$rm1t + comb$lm1t + comb$nm1t)/3) and (comb$rv5time + comb$ra5time)
t = 5.6931, df = 60, p-value = 3.973e-07
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4019090 0.7334968
sample estimates:
cor
0.592227
Quite reasonably so, the more data points you have, the more powerful the correlation:
cor.test(((comb$rm1t+comb$lm1t+comb$nm1t+comb$rm3t+comb$lm3t+comb$nm3t)),(comb$ra5time+comb$rv5time))
Pearson's product-moment correlation
data: ((comb$rm1t + comb$lm1t + comb$nm1t + comb$rm3t + comb$lm3t + and (comb$ra5time + comb$rv5time) comb$nm3t)) and (comb$ra5time + comb$rv5time)
t = 6.1225, df = 57, p-value = 9.054e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4456685 0.7628949
sample estimates:
cor
0.6298656
Interestingly, this is stronger for ra than combined:
> cor.test(((comb$rm1t+comb$lm1t+comb$nm1t+comb$rm3t+comb$lm3t+comb$nm3t)),(comb$ra5time))
Pearson's product-moment correlation
data: ((comb$rm1t + comb$lm1t + comb$nm1t + comb$rm3t + comb$lm3t + and (comb$ra5time) comb$nm3t)) and (comb$ra5time)
t = 6.6186, df = 58, p-value = 1.278e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.4823875 0.7799717
sample estimates:
cor
0.6559632
{{:r:micro13_ratime.png?400|}}
> t.test(((comb$rm1s)),(comb$rm5s), paired = TRUE)
Paired t-test
data: ((comb$rm1s)) and (comb$rm5s)
t = -3.3628, df = 63, p-value = 0.001316
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.056746 -1.287004
sample estimates:
mean of the differences
-3.171875
> t.test(((comb$rm1t)),(comb$rm5t), paired = TRUE)
Paired t-test
data: ((comb$rm1t)) and (comb$rm5t)
t = 8.0806, df = 63, p-value = 2.58e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
8.903005 14.753245
sample estimates:
mean of the differences
11.82812