This is an old revision of the document!
This one is interesting
plot(((comb$rm1t+comb$lm1t+comb$nm1t)/3),(comb$rv5time+comb$ra5time))
> cor.test(((comb$rm1t+comb$lm1t+comb$nm1t)/3),(comb$rv5time+comb$ra5time))
Pearson's product-moment correlation data: ((comb$rm1t + comb$lm1t + comb$nm1t)/3) and (comb$rv5time + comb$ra5time) t = 5.6931, df = 60, p-value = 3.973e-07 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.4019090 0.7334968 sample estimates: cor 0.592227
Quite reasonably so, the more data points you have, the more powerful the correlation:
cor.test(((comb$rm1t+comb$lm1t+comb$nm1t+comb$rm3t+comb$lm3t+comb$nm3t)),(comb$ra5time+comb$rv5time))
Pearson's product-moment correlation data: ((comb$rm1t + comb$lm1t + comb$nm1t + comb$rm3t + comb$lm3t + and (comb$ra5time + comb$rv5time) comb$nm3t)) and (comb$ra5time + comb$rv5time) t = 6.1225, df = 57, p-value = 9.054e-08 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.4456685 0.7628949 sample estimates: cor 0.6298656
Interestingly, this is stronger for ra than combined:
> cor.test(((comb$rm1t+comb$lm1t+comb$nm1t+comb$rm3t+comb$lm3t+comb$nm3t)),(comb$ra5time))
Pearson's product-moment correlation data: ((comb$rm1t + comb$lm1t + comb$nm1t + comb$rm3t + comb$lm3t + and (comb$ra5time) comb$nm3t)) and (comb$ra5time) t = 6.6186, df = 58, p-value = 1.278e-08 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.4823875 0.7799717 sample estimates: cor 0.6559632